6k^2+5k-7=0

Simple and best practice solution for 6k^2+5k-7=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6k^2+5k-7=0 equation:


Simplifying
6k2 + 5k + -7 = 0

Reorder the terms:
-7 + 5k + 6k2 = 0

Solving
-7 + 5k + 6k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-1.166666667 + 0.8333333333k + k2 = 0

Move the constant term to the right:

Add '1.166666667' to each side of the equation.
-1.166666667 + 0.8333333333k + 1.166666667 + k2 = 0 + 1.166666667

Reorder the terms:
-1.166666667 + 1.166666667 + 0.8333333333k + k2 = 0 + 1.166666667

Combine like terms: -1.166666667 + 1.166666667 = 0.000000000
0.000000000 + 0.8333333333k + k2 = 0 + 1.166666667
0.8333333333k + k2 = 0 + 1.166666667

Combine like terms: 0 + 1.166666667 = 1.166666667
0.8333333333k + k2 = 1.166666667

The k term is 0.8333333333k.  Take half its coefficient (0.4166666667).
Square it (0.1736111111) and add it to both sides.

Add '0.1736111111' to each side of the equation.
0.8333333333k + 0.1736111111 + k2 = 1.166666667 + 0.1736111111

Reorder the terms:
0.1736111111 + 0.8333333333k + k2 = 1.166666667 + 0.1736111111

Combine like terms: 1.166666667 + 0.1736111111 = 1.3402777781
0.1736111111 + 0.8333333333k + k2 = 1.3402777781

Factor a perfect square on the left side:
(k + 0.4166666667)(k + 0.4166666667) = 1.3402777781

Calculate the square root of the right side: 1.157703666

Break this problem into two subproblems by setting 
(k + 0.4166666667) equal to 1.157703666 and -1.157703666.

Subproblem 1

k + 0.4166666667 = 1.157703666 Simplifying k + 0.4166666667 = 1.157703666 Reorder the terms: 0.4166666667 + k = 1.157703666 Solving 0.4166666667 + k = 1.157703666 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + k = 1.157703666 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + k = 1.157703666 + -0.4166666667 k = 1.157703666 + -0.4166666667 Combine like terms: 1.157703666 + -0.4166666667 = 0.7410369993 k = 0.7410369993 Simplifying k = 0.7410369993

Subproblem 2

k + 0.4166666667 = -1.157703666 Simplifying k + 0.4166666667 = -1.157703666 Reorder the terms: 0.4166666667 + k = -1.157703666 Solving 0.4166666667 + k = -1.157703666 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + k = -1.157703666 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + k = -1.157703666 + -0.4166666667 k = -1.157703666 + -0.4166666667 Combine like terms: -1.157703666 + -0.4166666667 = -1.5743703327 k = -1.5743703327 Simplifying k = -1.5743703327

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.7410369993, -1.5743703327}

See similar equations:

| -4(2-7r)=-31+5r | | 252/45 | | 93*84= | | 9/7x-1/x | | 4(5x+7-8)+2=-8 | | 9(8+2r)=35 | | 2(x-a)+3y=3x+a | | 2x-(3-x)=8 | | -7-11(-9p+9)=-7p-3(1-p) | | x/3-2=18 | | -2(z-3)=10 | | 5+2(x-4)=2[5-6(x+2)] | | x+0.05x=169 | | -35x=-35 | | x^3/4*x^5/4 | | .4x-1=.7x+1.5 | | 31=22z-15+-28 | | 5x+8=13+7(x-3) | | 3n+5=2n+9 | | -7(3x+8)=-21x-56 | | 5x^3y-15x^2y+10xy= | | 2(1+2x)-3=4-(4-3x) | | 3(-2-4x)=42 | | 7x+19=-2x+5 | | 4-6m+5m=7 | | (17x+8)=(13x+24) | | -10x+65=117 | | 14=3(n-4)-2n | | 2.4x=13.68 | | -3(1-8b)=-20 | | Cx=A-By | | (3m^4-2m^2+m)-(6m^3+8m^2+4m)+(m^2-m)= |

Equations solver categories